

Beach Boulevard Corridor Study Final Report

- Develop a multimodal transportation vision
- Collaborate with Caltrans and corridor cities/agencies
- Identify constraints/opportunities to improve mobility
- Support local land-use objectives and help address transportation needs
- Prepare solutions and concepts for use by cities and agencies

Corridor Overview

- 21-miles, from Pacific Coast Highway to Whittier Boulevard
- Study area covers 1.25-mile radius on either side
- Crosses nine cities and unincorporated county areas
- Typically six to eight lanes
- Daily traffic volumes range from 30,000 to 85,000
- Interconnects with four freeways
- 22 OCTA bus routes (25 total)

Purpose

 To identify and recommend feasible multimodal transportation improvements to facilitate mobility and connectivity for travelers of all modes along Beach Boulevard

Need

 To address existing and anticipated future demands for local and regional travel along Beach Boulevard, including vehicular throughput, active transportation connectivity and transit operations, and to complement local land use types

Public Engagement

Outreach Approach

- Partner with corridor agencies
- Online survey
- Community events/pop-ups
- City/organization presentations
- Mailing/flyer distribution
- Onboard bus customer outreach
- Digital media

Feedback

- 2,300 surveys collected
- Phase 1
 - Improvement opportunities
- Phase 2
 - Habits and usage

Toolbox Development

- List of improvements or elements by mode of travel
- Conducted preliminary assessments
- Established tiers of toolbox elements
- Classified local vs. regional implementation
- Assessed impacts of each element
- Identified corridor segments where element could be applied

#	Transit Elements	Tier	Local/ Regional
T1	Bus stops/stations amenities	1	L
T2	Transit signal priority treatments	2	R
Т3	Transit preferential treatments	2	R
Т4	Dedicated transit lanes (for BRT)	2	R
Т5	First-last mile improvements at major stops	1	L

Tier 0: Lowest cost/least complicated, easiest to implement Tier 1: Low cost/generally less complicated, shorter implementation lead time Tier 2: Mid cost/moderately complicated, longer implementation lead time Tier 3: High cost/complicated, longest implementation lead time

BEACH BLVE

Toolbox

- Cutsheets were prepared for each toolbox element and contained information on:
 - Consistency with goals
 - Locations
 - Coordination needed
 - Design considerations
 - Typical applications
 - Range of costs

- - Illustrative examples of implementation of toolbox items
 - Five sample locations selected
 - Major intersection

Case Studies

- Minor intersection
- Freeway ramp terminus intersection
- Six-lane roadway segment
- Eight-lane roadway segment

Eight-Lane Roadway Segment Case Study

Next Steps

- OCTA to be a resource to cities and agencies
- Help identify, apply for and administer grants, and other funding opportunities
- Coordinate with Caltrans and other responsible agencies
- Provide information and resources to support outreach activities

Improvements Toolbox

BEACH BLVD

#	Pedestrian Elements	Tier	Local/ Regional
P1	Close gaps in sidewalk network	0/2	L
P2	Remove sidewalk obstructions	2	L
Р3	Sidewalk amenities	1	L
P4	Pedestrian scrambles	2	L
Р5	Pedestrian refuge islands	2	L
P6	Countdown pedestrian signal heads	1	L
P7	High-visibility crosswalks	0	L
P8	Realign crosswalks at freeway ramps	1	С
Р9	Corner/sidewalk bulbs	2	L
P10	Mid-block signalized pedestrian crossings	2	L
P11	On-street parking/loading zones	3	С

#	Bicycle Elements	Tier	Local/ Regional
B1	Protected bike lanes (on Beach Boulevard)	3	С
B2	Close gaps in bicycle network (on parallel streets)	0	L
B3	Painted Bike Lanes (on Beach Boulevard)	1	L
B4	Bicycle preferential treatments	1	L
B5	Bike on sidewalk treatments	0	L

Tier 0: Lowest cost/least complicated, easiest to implement Tier 1: Low cost/generally less complicated, shorter implementation lead time Tier 2: Mid cost/moderately complicated, longer implementation lead time Tier 3: High cost/complicated, longest implementation lead time

Improvements Toolbox

#	Vehicular Elements	Tier	Local/ Regional
V1	Advanced traffic signal timing/ITS	2	R
V2	Active traffic management	3	R
V3	Access management (remove driveways)	2	L
V4	On-street parking/loading zones removal	1	L
V5	Eliminate mid-block median breaks	2	L
V6	Pedestrian bridges	3	L
V7	Adjust interchange ramp locations/configurations	3	R
V8	Alternative intersection configurations	3	R

#	Transit Elements	Tier	Local/ Regional
T1	Bus stops/stations amenities	1	L
Т2	Transit signal priority treatments	2	R
Т3	Transit preferential treatments	2	R
T4	Dedicated transit lanes (for BRT)	2	R
T5	First-last mile improvements at major stops	1	L

Tier 0: Lowest cost/least complicated, easiest to implement Tier 1: Low cost/generally less complicated, shorter implementation lead time Tier 2: Mid cost/moderately complicated, longer implementation lead time Tier 3: High cost/complicated, longest implementation lead time

BRT – Bus Rapid Transit

